منابع مشابه
continued fraction ∗
We use a continued fraction expansion of the sign-function in order to obtain a five dimensional formulation of the overlap lattice Dirac operator. Within this formulation the inverse of the overlap operator can be calculated by a single Krylov space method where nested conjugate gradient procedures are avoided. We show that the five dimensional linear system can be made well conditioned using ...
متن کاملA q-CONTINUED FRACTION
Let a, b, c, d be complex numbers with d 6= 0 and |q| < 1. Define H1(a, b, c, d, q) := 1 1 + −abq + c (a + b)q + d + · · · + −abq + cq (a + b)qn+1 + d + · · · . We show that H1(a, b, c, d, q) converges and 1 H1(a, b, c, d, q) − 1 = c − abq d + aq P∞ j=0 (b/d)(−c/bd)j q (q)j(−aq/d)j P∞ j=0 (b/d)(−c/bd)j q (q)j(−aq/d)j . We then use this result to deduce various corollaries, including the followi...
متن کاملA Specialised Continued Fraction
We display a number with a surprising continued fraction expansion and show that we may explain that expansion as a specialisation of the continued fraction expansion of a formal series: A series ∑ chX −h has a continued fraction expansion with partial quotients polynomials in X of positive degree (other, perhaps than the 0-th partial quotient). Simple arguments, let alone examples, demonstrate...
متن کاملOn a continued fraction formula of Wall
We study the combinatorics of a continued fraction formula due to Wall. We also derive the orthogonality of little q-Jacobi polynomials from this formula, as Wall did for little q-Laguerre polynomials.
متن کاملOn the Generalized Rogers–ramanujan Continued Fraction
On page 26 in his lost notebook, Ramanujan states an asymptotic formula for the generalized Rogers–Ramanujan continued fraction. This formula is proved and made slightly more precise. A second primary goal is to prove another continued fraction representation for the Rogers–Ramanujan continued fraction conjectured by R. Blecksmith and J. Brillhart. Two further entries in the lost notebook are e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 1984
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa-43-3-209-226